David Perkel and Rajiv Saigal, the 2018 May UWIN seminar speakers.Please join us for May’s UWIN seminar! This installment features a fascinating pair of short talks by UWIN faculty members David Perkel and Rajiv Saigal:

  • A simple microcircuit for generating neural variability to support vocal learning”
    David Perkel, Professor,  Departments of Biology and Otolaryngology, University of Washington
  • “Opportunities and Limitations of Neuroengineering approaches to CNS injury”
    Rajiv Saigal, Assistant Professor, Department of Neurological Surgery, University of Washington

The seminar is on Wednesday, May 9th, 2018, at 3:30pm in Husky Union Building (HUB) 337. Refreshments will be served prior to the talks.


A simple microcircuit circuit for generating neural variability for vocal learning” (David Perkel):

Songbirds, like humans, learn their vocalizations from other individuals using a trial-and-error process. We study the neural mechanisms underlying this ability as a model both for speech learning but also more generally as a model for reinforcement learning of complex motor skills. One requirement of trial-and-error learning is variability from trial to trial. Songbirds have a basal ganglia circuit that generates and rapidly modulates neural and behavioral variability, and we have identified experimentally a simple neural microcircuit that can contribute to generating variability. We have also used a highly constrained neural model to explore this possible mechanism for exploring acoustic space during vocal learning.


“Opportunities and Limitations of Neuroengineering approaches to CNS injury” (Rajiv Saigal):

Both traumatic brain and spinal cord injury (TBI and SCI) involve a primary mechanical trauma and well-elucidated secondary injury mechanisms. In spite of this knowledge and promising pre-clinical data, multiple clinical trials have failed to demonstrate benefit for human patients. This talk will review some of the clinical challenges and unmet needs for treating these complex injuries. There is a growing body of literature on engineering approaches for treating TBI and SCI. We will review promising approaches and opportunities for collaboration at UW.