Category: news (page 1 of 9)

March UWIN seminar: Short talks by Steve Perlmutter and Steve Brunton

Steve Perlmutter and Steve Brunton, the 2018 March UWIN seminar speakers.Please join us for March’s UWIN seminar! This installment features a captivating duo of short talks by UWIN faculty members Steve Perlmutter and Steve Brunton:

  • Changes in Corticospinal Synaptic Strength Lead to Compensatory Changes in Cortical Neuron Firing. What’s the Feedback Signal?”
    Steve Perlmutter, Research Associate Professor, Department of Physiology & Biophysics, University of Washington
  • Learning physics and the physics of learning”
    Steve Brunton, Assistant Professor, Department of Mechanical Engineering, University of Washington

The seminar is on Wednesday, March 14th, 2018, at 3:30pm in Husky Union Building (HUB) 337.  Refreshments will be served prior to the talks.


“Changes in Corticospinal Synaptic Strength Lead to Compensatory Changes in Cortical Neuron Firing. What’s the Feedback Signal?” (Steve Perlmutter):

We are using activity-dependent electrical stimulation to induce synaptic plasticity in behaving non-human primates. Spinal stimulation triggered by corticomotoneuronal cell activity leads to increases in synaptic strength at the synapse to spinal motoneurons.  The activity pattern of the triggering cell changes after the conditioning in a compensatory manner.  The mechanism for this compensatory change is not clear, but suggests an unexpectedly tight feedback loop to precisely regulate cortical output to motoneurons.


Learning physics and the physics of learning” (Steve Brunton):

The ability to discover physical laws and governing equations from data is one of humankind’s greatest intellectual achievements.  A quantitative understanding of dynamic constraints and balances in nature has facilitated rapid development of knowledge and enabled advanced technology, including aircraft, combustion engines, satellites, and electrical power.  There are many more critical data-driven problems, such as understanding cognition from neural recordings, inferring patterns in climate, determining stability of financial markets, predicting and suppressing the spread of disease, and controlling turbulence for greener transportation and energy.  With abundant data and elusive laws, data-driven discovery of dynamics will continue to play an increasingly important role in these efforts.  This work develops a general framework to discover the governing equations underlying a dynamical system simply from data measurements, leveraging advances in sparsity-promoting techniques and machine learning.

2018 Neural Computation and Engineering Connection Highlights

Poster for the 2018 Neural Computation and Engineering ConnectionThe 2018 Neural Computation and Engineering Connection (NCEC) was held on January 18-19, 2018.  This annual event brings together the UW neuroengineering and computational neuroscience communities to share and discuss new research and facilitate collaborations.  The event is sponsored annually by the UW Institute for Neuroengineering (UWIN), the Center for Sensorimotor Neural Engineering (CSNE), and the UW Computational Neuroscience Center.  This year’s connection drew 140 attendees and was highlighted by five invited keynote lectures, four talks by local UW faculty, two talks by senior UWIN postdoctoral fellows, seven talks by senior graduate and undergraduate students, a series of lightning talks by new graduate students and postdoctoral fellows, and a poster session.  A huge thank you to all those who attended and participated!

Day 1: Thursday, January 18, 2018

Poster Session

Day 1 of NCEC kicked off with a poster session over lunch.  20 UW faculty members and students presented their work on a variety of neural engineering and computational neuroscience topics.

(Click on thumbnails to see full-size images)

Poster session at the 2018 Neural Computation and Engineering ConnectionPoster session at the 2018 Neural Computation and Engineering ConnectionPoster session at the 2018 Neural Computation and Engineering ConnectionPoster session at the 2018 Neural Computation and Engineering Connection


Keynote lecture: “Engineering Haptic Illusions”

Allison Okamura, Professor, Department of Mechanical Engineering, Stanford University

In the first keynote lecture, Allison Okamura spoke about her work with haptics, the study of human touch sensing.  She provided examples of situations in which haptic feedback can be beneficial when the sense of touch is absent or has been lost: in robot-assisted surgery, with prostheses, for manipulation of robots/tools in dangerous situations (e.g., in space, or mine diffusion).  Okamura discussed a few of the many ways her lab focuses on haptics:

  • Design and control of haptic systems: When does it make sense to provide haptic feedback rather than visual feedback?
  • How haptic feedback can optimize robot-assisted minimally invasive surgery.
  • Wearable haptics, to be used by stroke patients during exercise(s).

Allison Okamura speaks at the 2018 Neural Computation and Engineering Connection

Allison Okamura speaks at the 2018 Neural Computation and Engineering Connection







“Sparse sensing by arrays of wing mechanosensors for insect flight control”

Thomas Mohren, UWIN graduate fellow, S. Brunton and Daniel labs

Mohren seeks to answer the question of how insect mechanosensors work to sense things; specifically, how distributed sensors combine information to assess rotational movement. He uses a computational model of a moth wing, building in computations for flapping and rotation in an attempt to distinguish flapping vs. flapping + rotation.


“Synaptic specialization and convergence of visual channels in the retina”

Phil Mardoum, UWIN graduate fellow, Rieke and Wong labs

Mardoum asks if signals from rods and cones in the retina are filtered differently; specifically, if postsynaptic receptor mechanisms differ between rods and cones.  He records from bipolar cells in zebrafish while exposing the fish to lights of different wavelengths and/or disrupting cell signaling in the retina.


“Visual learning and processing in the honeybee, Apis mellifera

Claire Rusch, UWIN graduate fellow, Riffell lab

Rusch asks how honeybees are capable of complex learning and behavior with so few neurons in their brains (1 million neurons total in the honeybee brain, 170,000 in the mushroom body, the center of learning/memory).  She records activity from the honeybee brain and assesses how learning changes neural activity.


“Engineering direct cortical stimulation in humans”

David Caldwell, UWIN/BDGN graduate fellow, Rao and Ojemann labs

Caldwell’s goal is to enhance neural connectivity through electrical cortical stimulation.  He looks at the behavioral and neural effects of cortical stimulation in humans, working with patients implanted with electrocorticographic (ECoG) grids in preparation for epilepsy surgery.


“Simulating Axon Health’s Impacts in the Setting of Cochlear Implants”

Jesse Resnick, Computational Neuroscience Training Grant graduate fellow, Rubinstein lab

Even with cochlear implants (CIs), some hearing tasks can still be challenging for people who have lost their hearing: localizing the source of a sound and speech recognition in noisy environments.  These tasks require assessing the time difference in sound arrival between the ears (Interaural Time Difference, ITD).  By building a computational model of demyelination in auditory neurons, Resnick is working to asses if variability in demyelination severity contributes to ITD detection ability.


“Rod-cone flicker cancellation: retinal processing and perception in intermediate light”

Adree Songco-Aguas, Computational Neuroscience Training Grant undergraduate fellow, Rieke lab

The rods and cones in our retina make vision seamless across day and night.  Songco-Aguas is interested in how the retina behaves in intermediate light, assessing how retinal ganglion cells respond when photoreceptors are stimulated with intermediate light levels.


“Spatiochromatic integration by V1 double opponent neurons”

Abhishek De, Computaional Neuroscience Training Grant graduate fellow, Horwitz lab

De addresses the question of how color is processed spatially.  Specifically, he asks how neurons in area V1 of the visual cortex combine color signals across their spatial fields.  He records extracellularly from V1 neurons in primates to see how neurons process color across receptive fields.


Day 2: Friday, January 19, 2018

Panel Discussion on Ethics in Neuroscience.

Day 2 started with breakfast and a lively discussion of ethics in neuroscience by a panel composed of UW and visiting faculty.  The panel began by discussing effective collaboration between theorists and experimentalists, particularly as it pertains to authorship on publications.  The session then shifted to a discussion about our responsibilities as scientists in presenting results to the public.  There were discussions about balancing highlighting the novelty and general interest of research vs. realism about data, especially given the pressure for needing exciting results to generate funding.

(Seated from left to right are: Adrienne Fairhall (UW), Rafael Yuste (Columbia), Beth Buffalo (UW), David Perkel (UW), Tom Daniel (UW), Eric Shea-Brown (UW), Michael Berry (Princeton))

Neuroscience ethics panel at the 2018 Neural Computation and Engineering Connection





“Behavioral Implementation of Mnemonic Processing”

Sheri Mizumori, Professor, UW Department of Psychology

Mizumori addresses the question of how the hippocampus influences behavior; in other words, how memory drives behavior choice.  During her lecture, she spoke about possible connectivity routes in the brain related to the question, and discussed her research showing the lateral habenula’s (LHb) role in reinforcement learning.  Her research provided evidence that the hippocampus and LHb are part of the same memory-driven system, linked to a theta-generating network; and that the LHb is involved in the same flexible behaviors the hippocampus is involved in.


“Optogenetic stimulation leads to connectivity changes across sensorimotor cortex in non-human primates”

Azadeh Yazdan, Washington Research Foundation Innovation Assistant Professor of Neuroengineering, UW Departments of Bioengineering and Electrical Engineering

One focus of Yazdan’s lab is the development of efficient stimulation-based therapies for stroke.  She developed a large-scale interface for optogenetics in non-human primates, and is looking at how this technique can be used to change functional connectivity between somatosensory and motor cortices.  Her future work in stimulation-based stroke therapies will focus on three components: mechanisms of stimulation-induced plasticity, stroke studies in non-human primates, and large-scale interfaces.

Azadeh Yazdan speaks at the 2018 Neural Computation and Engineering Connection





Keynote lecture: “Emergence of dynamically reconfigurable hippocampal responses by learning to perform probabilistic spatial reasoning”

Ila Fiete, Associate Professor, Department of Neuroscience, UT Austin

Fiete’s goal is to learn how the brain computes and to better understand neural coding and dynamics.  She asks how neural computation unfolds over time, and how neural responses underlie the computations that are performed.  One difficult problem her lab considers is how to simultaneously know where you are in the environment, and also build a map of where you are.  Her lab trained a neural network to solve these problems, to report an accurate estimation of position in complex tasks.


Keynote lecture & Robotics Colloquium: “Robotic-assisted movement training after stroke: Why does it work and how can it be made to work better?”

David Reinkensmeyer, Professor, Departments of Mechanical and Aerospace Engineering, Anatomy and Neurobiology, and Biomedical Engineering, UC Irvine

Robot-assisted stroke therapy can provide improvements to stroke patients, but there is high variability.  By what mechanisms of plasticity or motor learning does robot-assisted therapy work? To answer this question, Reikensmeyer’s lab is building computational models of recovery after stroke, testing and refining them with data from patients receiving robotic-assisted therapy.  During his lecture, he showed examples of various types of robotic-assisted therapy, including rehabilitation devices available to the public.

David Reinkensmeyer speaks at the 2018 Neural Computation and Engineering Connection




“Info in a bottleneck”

Gabrielle Gutierrez, UWIN postdoctoral fellow, UW Applied Mathematics Department

Gutierrez asks how signal processing in the retina preserves image information.  In the retina, many bipolar cells converge onto one retinal ganglion cell (RGC).  She looked at response functions between bipolar cells and RGCs, finding that many bipolar cells converging on one RGC helps with noise processing.


“Modeling the perceptual experience of retinal prosthesis patients”

Michael Beyeler, UWIN postdoctoral fellow, UW Psychology Department & the UW eScience Institute

Retinal prostheses can restore some sight to individuals who have lost vision due to conditions such as macular degeneration and retinitis pigmentosa.  Beyeler asks what people with retinal prostheses actually see; visual perception with a retinal prosthesis is highly distorted relative to normal vision.  He is working on a computational model that predicts what people with retinal prostheses will actually see, using data from patients with retinal prostheses.  His ultimate goal is to use the model to improve and optimize the stimulation protocol for these prostheses to improve what patients actually see.


Keynote lecture: “Neural substrates of prospection”

Loren Frank, Professor, Kavli Institute for Fundamental Neuroscience, Department of Physiology, UC San Francisco

One role played by memories is their use in decision-making.  Frank discussed his lab’s work using large-scale recording techniques to record activity in the hippocampus, as well as other areas of the brain, to relate patterns of activity to the basic cognitive functions of the structure.  He shared research showing neural activity in the hippocampus was not just a representation of past locations, but also representation of possible future paths in space; recorded neural activity guides future behavior.


“Interfaces to monitor and manipulate large-scale neural circuits in primates”

Amy Orsborn, Clare Boothe Luce Assistant Professor, UW Electrical Engineering & Bioengineering Departments

Brain-machine interfaces (BMIs) can restore motor abilities; individuals who are paralyzed or missing a limb can control robotic limbs through motor cortex activity in their brain.  Orsborn studies motor learning in order to improve BMIs.  She discussed research working to improve the algorithms used to map neural activity onto control of robotic devices in BMIs.  Orsborn also talked about tools she is developing to study neural networks across multiple spatial scales.


“Dynamic Mechanisms underlying rhythm generation in cortical and brainstem microcircuits”

Nino Ramirez, Professor, UW Neurological Surgery Department, Director, Center for Integrative Brain Research, Seattle Children’s Research Institute

Ramirez discussed microcircuits in the brain that establish rhythms for breathing, and specifically presented work on the role of inhibition and excitation in breathing mechanisms.  Understanding these mechanisms has implications for understanding conditions associated with disordered respiratory rhythms.


Keynote lecture: “Circuit basis for behavioral flexibility”

Takaki Komiyama, Associate Professor of Neurobiology and Neurosciences, UC San Diego

Komiyama studies how circuits of neurons allow for behavioral flexibility; noting how amazing the flexibilities of the brain and our behavior are.  He addresses the questions of what circuits are involved in motor learning over many repetitions and practice, and if the relationship between brain activity and movement is stable.  Komiyama uses wide-field calcium imaging to assess how brain activity changes with motor learning.


February UWIN seminar: Short talks by Chantel Prat and Eric Shea-Brown

Chantel Prat and Eric Shea-Brown, the 2018 February UWIN seminar speakers.Please join us for February’s UWIN seminar! This installment features a fascinating pair of short talks by UWIN faculty members Chantel Prat and Eric Shea-Brown:

  • “Neurometrics: Resting-state qEEG Predicts Second Language (L2) Learning as well as a Standardized Language Aptitude Test”
    Chantel Prat, Associate Professor, Department of Psychology, Institute for Learning & Brain Sciences, University of Washington
  • “Linking the statistics of network activity and network connectivity”
    Eric Shea-Brown, Assistant Professor, Department of Physiology & Biophysics, University of Washington

The seminar is on Wednesday, February 14th, 2018, at 3:30pm in Husky Union Building (HUB) 337.  Refreshments will be served prior to the talks.


“Neurometrics: Resting-state qEEG Predicts Second Language (L2) Learning as well as a Standardized Language Aptitude Test” (Chantel Prat):

Decades of research using fMRI and EEG have shown that properties of network-level brain functioning at rest can be used to characterize individual differences in a variety of cognitive abilities. My current work explores the predictive utility of various characterizations of brain function using quantitative EEG (qEEG), resting-state fMRI, structural MRI, task-related fMRI, and psychometric tests of cognitive abilities for understanding individual differences in L2 learning. In the current talk, I’ll describe a study showing that 5 minutes of eyes-closed resting-state qEEG data can predict L2 learning as well, or better, than a standardized language aptitude test that takes a bit over an hour to administer. Future directions include the development and testing of neurometric assessment tools for predicting subsequent complex behaviors.

“Linking the statistics of network activity and network connectivity” (Eric Shea-Brown):

There is an avalanche of new data on the brain’s activity, revealing the collective dynamics of vast numbers of neurons. In principle, these collective dynamics can be of almost arbitrarily high dimension, with many independent degrees of freedom — and this may reflect powerful capacities for general computing or information. In practice, datasets reveal a range of outcomes, including collective dynamics of much lower dimension — and this may reflect the structure of tasks or latent variables. For what networks does each case occur? Our contribution to the answer is a new framework that links tractable statistical properties of network connectivity with the dimension of the activity that they produce. I’ll describe where we have succeeded, where we have failed, and the many avenues that remain.

Applications open for 2018 UWIN undergraduate and post-baccalaureate fellowships

Applications are now open for the 2018 WRF Innovation Undergraduate and Post-baccalaureate Fellowships in Neuroengineering.  Applications are due by Tuesday, March 6th, 2018.

These fellowships provide up to $6000 to support undergraduate and post-baccalaureate researchers committed to working in UWIN faculty labs.  More information about applying for these fellowships can be found in the links below:

Registration open for 2018 Neural Computation and Engineering Connection (NCEC)

2018 Neural Computation and Engineering Connection posterRegistration is open for the 2018 Neural Computation and Engineering Connection (NCEC)!  It will be held on the afternoon of Thursday, January 18, 2018 and all day Friday, January 19, 2018.  NCEC brings together the UW neuroengineering and computational neuroscience communities in an exciting and stimulating event!

NCEC 2018 features many superb keynote speakers: Allison Okamura (Stanford), Loren Frank (UC San Francisco), Vivian Mushahwar (University of Alberta), Takaki Komiyama (UC San Diego), Ila Fiete (UT Austin) and David Reinkensmeyer (UC Irvine).  Local speakers include: Sheri Mizumori (Psychology), Amy Orsborn (Electrical Engineering/Bioengineering), Azadeh Yazdan (Bioengineering/Electrical Engineering), Nino Ramirez (Seattle Children’s Research Institute).  UWIN and Computational Neuroscience graduate and postdoctoral fellows will also be giving talks.

**Registration is free but required.  Please register at:
Registration closes on Monday, January 8th.**

A general schedule is available at:, and a detailed schedule will be available closer to the event.  Thursday’s daytime events will be at the CSNE (Russell Hall Suite 204, 1414 NE 42nd St.). Thursday evening will end with a launch event and reception in the Health Sciences Building for the new UW Computational Neuroscience Center.  Friday’s events will be at the Husky Union Building (HUB) room 250, with an evening reception in HUB 145.

UWIN faculty Andre Berndt and John Tuthill named 2017 Allen Institute Next Generation Leaders

Andre Bernt and John Tuthill, UWIN faculty named as Allen Institute 2017 Next Generation LeadersWe are excited to announce that two UWIN faculty members, Andre Berndt and John Tuthill, have been named as 2017 Allen Institute for Brain Science Next Generation Leaders!  The Allen Institute’s Next Generation Leaders are “distinguished early-career researchers who will provide feedback in both formal and informal settings to scientists at the Allen Institute”.

“We are very pleased to welcome this group of impressive researchers as advisors to the Allen Institute,” says Christof Koch, President and Chief Scientific Officer of the Allen Institute for Brain Science. “Their caliber and fresh perspectives make them invaluable to our team. We look forward to hearing their feedback as well as providing guidance as they build their own careers.”

According to the Allen Institute, “Next Generation Leaders are selected each year through a competitive application process from a pool of international applicants.”  Six researchers were appointed in the 2017 cohort; only two of the six are from the University of Washington, and both of those are UWIN faculty members!  This is the first time University of Washington faculty have been named Allen Institute Next Generation Leaders.

Earlier this year, Dr. Tuthill was also awarded a Sloan Fellowship, named a 2017 Searle Scholar, and received a UW Innovation Award.

You can read more at the Allen Institute press release, as well as see the biographies of Drs. Berndt and Tuthill.

Applications open for 2018 UWIN postdoctoral fellowships in neuroengineering

Applications are open for UWIN’s 2018 WRF Innovation Postdoctoral Fellowships in Neuroengineering.  These highly selective fellowships fund research in computational and engineering approaches to neuroscience; joint mentoring between faculty in different disciplines is strongly encouraged.

The fellowships provide two years of funding including a $65,000 annual salary and a $25,000 research stipend.

Applications are due by January 16, 2018. Please see for more information.

2017 WRF Innovation Graduate Fellowships in Neuroengineering awarded

We are pleased to announce the seven exceptional University of Washington graduate students have been awarded 2017 Washington Research Foundation Innovation Graduate Fellowships in Neuroengineering: Aaron D. Garcia (Neuroscience), Vaishnavi Ranganathan (Electrical Engineering), Soshi Samejima (Rehabilitation Science), Raymond Sanchez (Neuroscience), Mohammad Tariq (Neuroscience), Momona Yamagami (Electrical Engineering), and Ezgi Yücel (Psychology).  Read about the new fellows and their exciting, innovative research below:

Aaron D. Garcia is a Ph.D. student in the Neuroscience program advised by Bing Brunton in Biology and Elizabeth Buffalo in Physiology and Biophysics. Aaron’s research centers on identifying brain activity in the hippocampus and surrounding structures used during navigation and memory tasks. His approach involves applying empirical mode decomposition in tandem with Hilbert Spectral Analysis to local-field-potential data recorded from high-density micro-drives. Aaron received a bachelor’s degree in neuroscience from Boston University. He is a joint fellow of UWIN and the Computational Neuroscience Training Grant.
Vaishnavi Ranganathan is a Ph.D. student in Electrical Engineering working with Josh Smith in the Sensor Systems Lab. Vaishnavi’s research interests include fully wireless wearable devices and implantable neural interfaces for treatment and rehabilitation in patients with spinal cord injury. Specifically, she works on wireless power transfer and power-aware computation for implantable devices to remove the need for batteries and enable autonomous operation. Vaishnavi received a master’s degree in Electrical Engineering from Case Western Reserve University and completed her bachelor’s degree at Amrita University in India.
Soshi Samejima is a Ph.D. student in Rehabilitation Science working with Chet Moritz in Rehabilitation Medicine and Rajiv Saigal in Neurological Surgery. Soshi’s research focuses on restoring mobility and leg/arm function for people with spinal cord injury by using electrical spinal stimulation and rehabilitation through neural interfaces and robotics. For the last 10 years, Soshi worked as a physical therapist. He received a clinical doctoral degree in physical therapy from MGH institute of Health Professions, a master’s degree in Biomedical Science and Athletic Training from Thomas Jefferson University and Texas Tech University respectively, and a bachelor’s degree in Health Science from Kanazawa University, Japan. He is co-funded by UWIN and the Center for Sensorimotor Neural Engineering.
Raymond Sanchez is a Ph.D. student in the Neuroscience program working in the lab of Horacio de la Iglesia in Biology. Raymond is interested in the neural circuits regulating sleep and circadian rhythms, and their relationship to neurological and psychiatric diseases. The goal of his research is to develop and validate a closed-loop system for real-time manipulations of sleep and seizures in a genetic mouse model of Dravet syndrome, a severe form of childhood epilepsy accompanied by sleep disturbances. This system will serve as an open-source experimental tool for researchers interested in the interactions between sleep and disease, and inform the development of novel therapeutic devices for Dravet and other epileptic syndromes. Raymond received a bachelor’s degree in Neuroscience & Cognitive Science from the University of Arizona.
Mohammad F. Tariq is a PhD student in the Neuroscience program working in the labs of David Gire in Psychology and David Perkel in Biology and Otolaryngology. His work focuses on understanding how olfactory cues in the environment guide memory formation and decision-making. He uses electrophysiology and imaging from freely behaving animals to study the network and physiological mechanisms that allow olfactory information to make robust memories of the environment. Mohammad received his bachelor’s degree in Neuroscience from the Georgia State University.
Momona Yamagami is a graduate student in Electrical Engineering working with Kat Steele in Mechanical Engineering and Sam Burden in Electrical Engineering. In her research, Momona uses a computer trajectory-tracking task to quantify and predict motor planning impairments in children with cerebral palsy. She is broadly interested in understanding how humans learn different control models to plan their movements. Momona received her bachelor’s degree in Bioengineering from Rice University in Houston, Texas.
Ezgi Irmak Yücel is a graduate student in Psychology, where she is a member of the Vision and Cognition Group working with Ione Fine in Psychology and Ariel Rokem at the eScience Institute. Ezgi’s research broadly focuses on visual perception and restorative technologies for blindness. Her current project aims to validate a retinal model of restored vision developed by UWIN postdoctoral fellow Michael Beyeler. She will use psychophysical methods to accomplish this, with the eventual goal of optimizing stimulation protocols for retinal prosthetics to improve visual outcomes. She received her bachelor’s degree in Psychology with a minor in Philosophy from Bilkent University in Turkey.

November UWIN seminar: Short talks by Sawyer Fuller and Wyeth Bair

Sawyer Fuller and Wyeth Bair, the 2017 November UWIN seminar speakers.The November UWIN seminar (2017) features a fascinating pair of short talks by UWIN faculty members Sawyer Fuller and Wyeth Bair:

  • “Fly-inspired visual flight control of insect-sized robots using wind sensing”
    Sawyer Fuller, Assistant Professor, Department of Mechanical Engineering, University of Washington
  • “Comparing shape representation in mid-level visual cortex to that in a deep convolutional neural network”
    Wyeth Bair, Associate Professor, Department of Biological Structure, University of Washington

The seminar is on Wednesday, November 8th, 2017 at 3:30pm in Husky Union Building (HUB) 337.  Refreshments will be served prior to the talks.



“Fly-inspired visual flight control of insect-sized robots using wind sensing” (Sawyer Fuller):

In the Autonomous Insect Robotics Laboratory at the University of Washington, one of the projects we are interested in is how to give robots the size of a honeybee the ability to fly themselves autonomously. Larger drones can now do this task, but they use sensors that are not available in insect-sized packages, like the global positioning system and laser rangefinders. We are left with sight, the same modality used by flies. But visual processing is typically computationally intensive. I will describe research I performed on flies that reveals that they overcome this by combining slow feedback from vision with fast wind feedback, and discuss ramifications for our robots.


“Comparing shape representation in mid-level visual cortex to that in a deep convolutional neural network” (Wyeth Bair):

Convolutional neural nets (CNNs) are currently the best performing general purpose image recognition computer algorithms.  Their design is hierarchical, not unlike the neural architecture of the ventral visual pathway in the primate brain, which underlies form perception and object recognition.  We examined whether units within an implementation of “AlexNet” (Krizhevsky et al., 2012), following extensive supervised training, end up showing selectivity for the boundary curvature of simple objects in an object-centered coordinate system, similar to that found for neurons in the mid-level cortical area V4 (Pasupathy and Connor, 2001).  I will show how the units in AlexNet compare to those in V4 in terms of shape-tuning and translation invariance and will discuss the benefits and limitations of comparing complex artificial neural networks to the brain.

UWIN faculty Bing Brunton and Steve Brunton win AFOSR Young Investigator Awards

Bing Brunton and Steve Brunton, winners of AFOSR Young Investigator AwardsWe are extremely proud to announce that two UWIN faculty members, Bing Brunton (Biology) and Steve Brunton (Mechanical Engineering) have each won an AFOSR Young Investigator Research Program Award!  The Air Force Office of Scientific Research (AFOSR) Young Investigator Program recognizes those “who show exceptional ability and promise for conducting basic research”, and who have received Ph.D. or equivalent degrees in the last five years.

Bing’s awarded proposal was on “Sparse Sensing with Wing Mechanosensory Neurons for Estimation of Body Rotation in Flying Insects”.  Steve’s winning proposal was on “Interpretable Nonlinear Models of Unsteady Flow Physics”.  AFOSR Young Investigator Awards provide a 3-year grant totaling $450,000.

In addition to these prestigious awards from AFOSR, Bing was recently awarded a UW Innovation Award, and Steve won the 2017 UW College of Engineering’s Faculty Award for Teaching.

You can read more about the AFOSR Young Investigator awards on the AFOSR website.  Bing’s award from AFOSR was also highlighted on the UW Biology website.

Older posts