Category: news (page 2 of 10)

February 2018 UWIN seminar: Short talks by Chantel Prat and Eric Shea-Brown

Chantel Prat and Eric Shea-Brown, the 2018 February UWIN seminar speakers.Please join us for the February 2018 UWIN seminar! This installment features a fascinating pair of short talks by UWIN faculty members Chantel Prat and Eric Shea-Brown:

  • “Neurometrics: Resting-state qEEG Predicts Second Language (L2) Learning as well as a Standardized Language Aptitude Test”
    Chantel Prat, Associate Professor, Department of Psychology, Institute for Learning & Brain Sciences, University of Washington
  • “Linking the statistics of network activity and network connectivity”
    Eric Shea-Brown, Assistant Professor, Department of Physiology & Biophysics, University of Washington

The seminar is on Wednesday, February 14th, 2018, at 3:30pm in Husky Union Building (HUB) 337.  Refreshments will be served prior to the talks.


“Neurometrics: Resting-state qEEG Predicts Second Language (L2) Learning as well as a Standardized Language Aptitude Test” (Chantel Prat):

Decades of research using fMRI and EEG have shown that properties of network-level brain functioning at rest can be used to characterize individual differences in a variety of cognitive abilities. My current work explores the predictive utility of various characterizations of brain function using quantitative EEG (qEEG), resting-state fMRI, structural MRI, task-related fMRI, and psychometric tests of cognitive abilities for understanding individual differences in L2 learning. In the current talk, I’ll describe a study showing that 5 minutes of eyes-closed resting-state qEEG data can predict L2 learning as well, or better, than a standardized language aptitude test that takes a bit over an hour to administer. Future directions include the development and testing of neurometric assessment tools for predicting subsequent complex behaviors.

“Linking the statistics of network activity and network connectivity” (Eric Shea-Brown):

There is an avalanche of new data on the brain’s activity, revealing the collective dynamics of vast numbers of neurons. In principle, these collective dynamics can be of almost arbitrarily high dimension, with many independent degrees of freedom — and this may reflect powerful capacities for general computing or information. In practice, datasets reveal a range of outcomes, including collective dynamics of much lower dimension — and this may reflect the structure of tasks or latent variables. For what networks does each case occur? Our contribution to the answer is a new framework that links tractable statistical properties of network connectivity with the dimension of the activity that they produce. I’ll describe where we have succeeded, where we have failed, and the many avenues that remain.

Applications open for 2018 UWIN undergraduate and post-baccalaureate fellowships

Applications are now open for the 2018 WRF Innovation Undergraduate and Post-baccalaureate Fellowships in Neuroengineering.  Applications are due by Tuesday, March 6th, 2018.

These fellowships provide up to $6000 to support undergraduate and post-baccalaureate researchers committed to working in UWIN faculty labs.  More information about applying for these fellowships can be found in the links below:

Registration open for 2018 Neural Computation and Engineering Connection (NCEC)

2018 Neural Computation and Engineering Connection posterRegistration is open for the 2018 Neural Computation and Engineering Connection (NCEC)!  It will be held on the afternoon of Thursday, January 18, 2018 and all day Friday, January 19, 2018.  NCEC brings together the UW neuroengineering and computational neuroscience communities in an exciting and stimulating event!

NCEC 2018 features many superb keynote speakers: Allison Okamura (Stanford), Loren Frank (UC San Francisco), Vivian Mushahwar (University of Alberta), Takaki Komiyama (UC San Diego), Ila Fiete (UT Austin) and David Reinkensmeyer (UC Irvine).  Local speakers include: Sheri Mizumori (Psychology), Amy Orsborn (Electrical Engineering/Bioengineering), Azadeh Yazdan (Bioengineering/Electrical Engineering), Nino Ramirez (Seattle Children’s Research Institute).  UWIN and Computational Neuroscience graduate and postdoctoral fellows will also be giving talks.

**Registration is free but required.  Please register at:
Registration closes on Monday, January 8th.**

A general schedule is available at:, and a detailed schedule will be available closer to the event.  Thursday’s daytime events will be at the CSNE (Russell Hall Suite 204, 1414 NE 42nd St.). Thursday evening will end with a launch event and reception in the Health Sciences Building for the new UW Computational Neuroscience Center.  Friday’s events will be at the Husky Union Building (HUB) room 250, with an evening reception in HUB 145.

UWIN faculty Andre Berndt and John Tuthill named 2017 Allen Institute Next Generation Leaders

Andre Bernt and John Tuthill, UWIN faculty named as 2017 Allen Institute Next Generation LeadersWe are excited to announce that two UWIN faculty members, Andre Berndt and John Tuthill, have been named as 2017 Allen Institute for Brain Science Next Generation Leaders!  The Allen Institute’s Next Generation Leaders are “distinguished early-career researchers who will provide feedback in both formal and informal settings to scientists at the Allen Institute”.

“We are very pleased to welcome this group of impressive researchers as advisors to the Allen Institute,” says Christof Koch, President and Chief Scientific Officer of the Allen Institute for Brain Science. “Their caliber and fresh perspectives make them invaluable to our team. We look forward to hearing their feedback as well as providing guidance as they build their own careers.”

According to the Allen Institute, “Next Generation Leaders are selected each year through a competitive application process from a pool of international applicants.”  Six researchers were appointed in the 2017 cohort; only two of the six are from the University of Washington, and both of those are UWIN faculty members!  This is the first time University of Washington faculty have been named Allen Institute Next Generation Leaders.

Earlier this year, Dr. Tuthill was also awarded a Sloan Fellowship, named a 2017 Searle Scholar, and received a UW Innovation Award.

You can read more at the Allen Institute press release, as well as see the biographies of Drs. Berndt and Tuthill.

Applications open for 2018 UWIN postdoctoral fellowships in neuroengineering

Applications are open for UWIN’s 2018 WRF Innovation Postdoctoral Fellowships in Neuroengineering.  These highly selective fellowships fund research in computational and engineering approaches to neuroscience; joint mentoring between faculty in different disciplines is strongly encouraged.

The fellowships provide two years of funding including a $65,000 annual salary and a $25,000 research stipend.

Applications are due by January 16, 2018. Please see for more information.

2017 WRF Innovation Graduate Fellowships in Neuroengineering awarded

We are pleased to announce the seven exceptional University of Washington graduate students have been awarded 2017 Washington Research Foundation Innovation Graduate Fellowships in Neuroengineering: Aaron D. Garcia (Neuroscience), Vaishnavi Ranganathan (Electrical Engineering), Soshi Samejima (Rehabilitation Science), Raymond Sanchez (Neuroscience), Mohammad Tariq (Neuroscience), Momona Yamagami (Electrical Engineering), and Ezgi Yücel (Psychology).  Read about the new fellows and their exciting, innovative research below:

Aaron D. Garcia is a Ph.D. student in the Neuroscience program advised by Bing Brunton in Biology and Elizabeth Buffalo in Physiology and Biophysics. Aaron’s research centers on identifying brain activity in the hippocampus and surrounding structures used during navigation and memory tasks. His approach involves applying empirical mode decomposition in tandem with Hilbert Spectral Analysis to local-field-potential data recorded from high-density micro-drives. Aaron received a bachelor’s degree in neuroscience from Boston University. He is a joint fellow of UWIN and the Computational Neuroscience Training Grant.
Vaishnavi Ranganathan is a Ph.D. student in Electrical Engineering working with Josh Smith in the Sensor Systems Lab. Vaishnavi’s research interests include fully wireless wearable devices and implantable neural interfaces for treatment and rehabilitation in patients with spinal cord injury. Specifically, she works on wireless power transfer and power-aware computation for implantable devices to remove the need for batteries and enable autonomous operation. Vaishnavi received a master’s degree in Electrical Engineering from Case Western Reserve University and completed her bachelor’s degree at Amrita University in India.
Soshi Samejima is a Ph.D. student in Rehabilitation Science working with Chet Moritz in Rehabilitation Medicine and Rajiv Saigal in Neurological Surgery. Soshi’s research focuses on restoring mobility and leg/arm function for people with spinal cord injury by using electrical spinal stimulation and rehabilitation through neural interfaces and robotics. For the last 10 years, Soshi worked as a physical therapist. He received a clinical doctoral degree in physical therapy from MGH institute of Health Professions, a master’s degree in Biomedical Science and Athletic Training from Thomas Jefferson University and Texas Tech University respectively, and a bachelor’s degree in Health Science from Kanazawa University, Japan. He is co-funded by UWIN and the Center for Sensorimotor Neural Engineering.
Raymond Sanchez is a Ph.D. student in the Neuroscience program working in the lab of Horacio de la Iglesia in Biology. Raymond is interested in the neural circuits regulating sleep and circadian rhythms, and their relationship to neurological and psychiatric diseases. The goal of his research is to develop and validate a closed-loop system for real-time manipulations of sleep and seizures in a genetic mouse model of Dravet syndrome, a severe form of childhood epilepsy accompanied by sleep disturbances. This system will serve as an open-source experimental tool for researchers interested in the interactions between sleep and disease, and inform the development of novel therapeutic devices for Dravet and other epileptic syndromes. Raymond received a bachelor’s degree in Neuroscience & Cognitive Science from the University of Arizona.
Mohammad F. Tariq is a PhD student in the Neuroscience program working in the labs of David Gire in Psychology and David Perkel in Biology and Otolaryngology. His work focuses on understanding how olfactory cues in the environment guide memory formation and decision-making. He uses electrophysiology and imaging from freely behaving animals to study the network and physiological mechanisms that allow olfactory information to make robust memories of the environment. Mohammad received his bachelor’s degree in Neuroscience from the Georgia State University.
Momona Yamagami is a graduate student in Electrical Engineering working with Kat Steele in Mechanical Engineering and Sam Burden in Electrical Engineering. In her research, Momona uses a computer trajectory-tracking task to quantify and predict motor planning impairments in children with cerebral palsy. She is broadly interested in understanding how humans learn different control models to plan their movements. Momona received her bachelor’s degree in Bioengineering from Rice University in Houston, Texas.
Ezgi Irmak Yücel is a graduate student in Psychology, where she is a member of the Vision and Cognition Group working with Ione Fine in Psychology and Ariel Rokem at the eScience Institute. Ezgi’s research broadly focuses on visual perception and restorative technologies for blindness. Her current project aims to validate a retinal model of restored vision developed by UWIN postdoctoral fellow Michael Beyeler. She will use psychophysical methods to accomplish this, with the eventual goal of optimizing stimulation protocols for retinal prosthetics to improve visual outcomes. She received her bachelor’s degree in Psychology with a minor in Philosophy from Bilkent University in Turkey.

November 2017 UWIN seminar: Short talks by Sawyer Fuller and Wyeth Bair

Sawyer Fuller and Wyeth Bair, the November 2017 UWIN seminar speakers.The November 2017 UWIN seminar features a fascinating pair of short talks by UWIN faculty members Sawyer Fuller and Wyeth Bair:

  • “Fly-inspired visual flight control of insect-sized robots using wind sensing”
    Sawyer Fuller, Assistant Professor, Department of Mechanical Engineering, University of Washington
  • “Comparing shape representation in mid-level visual cortex to that in a deep convolutional neural network”
    Wyeth Bair, Associate Professor, Department of Biological Structure, University of Washington

The seminar is on Wednesday, November 8th, 2017 at 3:30pm in Husky Union Building (HUB) 337.  Refreshments will be served prior to the talks.



“Fly-inspired visual flight control of insect-sized robots using wind sensing” (Sawyer Fuller):

In the Autonomous Insect Robotics Laboratory at the University of Washington, one of the projects we are interested in is how to give robots the size of a honeybee the ability to fly themselves autonomously. Larger drones can now do this task, but they use sensors that are not available in insect-sized packages, like the global positioning system and laser rangefinders. We are left with sight, the same modality used by flies. But visual processing is typically computationally intensive. I will describe research I performed on flies that reveals that they overcome this by combining slow feedback from vision with fast wind feedback, and discuss ramifications for our robots.


“Comparing shape representation in mid-level visual cortex to that in a deep convolutional neural network” (Wyeth Bair):

Convolutional neural nets (CNNs) are currently the best performing general purpose image recognition computer algorithms.  Their design is hierarchical, not unlike the neural architecture of the ventral visual pathway in the primate brain, which underlies form perception and object recognition.  We examined whether units within an implementation of “AlexNet” (Krizhevsky et al., 2012), following extensive supervised training, end up showing selectivity for the boundary curvature of simple objects in an object-centered coordinate system, similar to that found for neurons in the mid-level cortical area V4 (Pasupathy and Connor, 2001).  I will show how the units in AlexNet compare to those in V4 in terms of shape-tuning and translation invariance and will discuss the benefits and limitations of comparing complex artificial neural networks to the brain.

UWIN faculty Bing Brunton and Steve Brunton win AFOSR Young Investigator Awards

Bing Brunton and Steve Brunton, winners of AFOSR Young Investigator AwardsWe are extremely proud to announce that two UWIN faculty members, Bing Brunton (Biology) and Steve Brunton (Mechanical Engineering) have each won an AFOSR Young Investigator Research Program Award!  The Air Force Office of Scientific Research (AFOSR) Young Investigator Program recognizes those “who show exceptional ability and promise for conducting basic research”, and who have received Ph.D. or equivalent degrees in the last five years.

Bing’s awarded proposal was on “Sparse Sensing with Wing Mechanosensory Neurons for Estimation of Body Rotation in Flying Insects”.  Steve’s winning proposal was on “Interpretable Nonlinear Models of Unsteady Flow Physics”.  AFOSR Young Investigator Awards provide a 3-year grant totaling $450,000.

In addition to these prestigious awards from AFOSR, Bing was recently awarded a UW Innovation Award, and Steve won the 2017 UW College of Engineering’s Faculty Award for Teaching.

You can read more about the AFOSR Young Investigator awards on the AFOSR website.  Bing’s award from AFOSR was also highlighted on the UW Biology website.

UWIN/eScience neuroinformatics working group launched

UWIN and eScience affiliates Ariel Rokem and Bing Brunton have started a neuroinformatics working group at the University of Washington, and all are welcome to join!  The working group focuses on software and computing technologies and their role in data-intensive neuroscience research.  You can read more about the purpose and objectives of the working group at its website.

Meetings of the working group take place in Kincaid 356 every other Thursday at 3 PM, starting October 5th. 

There is also a mailing list for the working group, which you can subscribe to for updates.  The mailing list will announce activities and facilitate discussion about neuroinformatics topics.  This may include questions about neuroinformatics, sharing publication of papers/software, etc.

October 2017 UWIN seminar: Short talks by Chet Mortiz and John Tuthill

Chet Mortiz and John Tuthill, October 2017 UWIN seminar speakersUWIN seminar resumes for the 2017-18 academic year!  The October 2017 UWIN seminar features an exciting pair of short talks by UWIN faculty members Chet Moritz and John Tuthill:

  • “Neural devices to promote plasticity and recovery following spinal cord injury”
    Chet Moritz, Associate Professor, Departments of Rehabilitation Medicine, Physiology & Biophysics, University of Washington
  • “Neural coding of leg proprioception”
    John Tuthill, Assistant Professor, Department of Physiology & Biophysics, University of Washington

The seminar is on Wednesday, October 11th, at 3:30pm in Husky Union Building (HUB) 337.  Refreshments will be served prior to the talks.


“Neural devices to promote plasticity and recovery following spinal cord injury” (Chet Moritz):

Neural devices have tremendous potential to improve quality of life after spinal cord injury. Both intraspinal and transcutaneous stimulation can activate neural circuits distal to an injury, leading to either direct muscle contraction or facilitating therapy enabling volitional movements. A recent case study of cervical transcutaneous stimulation resulted in both immediate and sustained improvements in hand and arm function. A participant with chronic C3 tetraplegia (ASIA D) improved nearly all measures of hand motor function tested after only 4 weeks of skin surface stimulation paired with physical therapy.  Physical therapy alone did not lead to further improvements, but benefits were sustained over a three month follow-up period without further treatment.

“Neural coding of leg proprioception”
(John Tuthill):

Proprioception, the sense of self-movement and body position, is critical for the effective control of motor behavior. We have developed new methods to record from genetically-identified neurons in proprioceptive circuits of the fruit fly, Drosophila, using 2-photon calcium imaging and patch-clamp electrophysiology. I will discuss our initial attempts to understand proprioceptive neural coding in cells and circuits that sense leg movement and position. I will also discuss how these proprioceptive feedback signals are used by motor circuits that control leg muscle activity and behavior.

Older posts Newer posts